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Emergence of a dominant unit in a network of chaotic units with a delayed connection change
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We study here a model of globally coupled units with adaptive interaction weights that has a delay in the
updating rule. Simulations show that the model with such delayed synaptic change exhibits dynamical self
organization of network structure. With suitably chosen parameters, ‘‘dominant’’ unit emerges spontaneously,
in the sense that the connections from such a unit to almost all of the other units are especially strengthened.
Such weight structure facilitates the coherent activity among units.
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I. INTRODUCTION

There have been many studies on coupled chaotic o
lators. Many interesting behaviors such as synchroniza
@1,2#, clustering @2,3#, and chaotic itinerancy@2# are ob-
served. In most of such studies, the coupling between o
lators are identical, while in some studies, random dele
of connection@4# or random modification of the connectio
strengths@5# are considered.

In this paper, we present a study on the system with
temporal change of connection strengths, which has ha
been considered so far in this research field, though th
seem to be many natural systems that can be modele
such a system, i.e., neural system, ecological network, so
network, and so on.

Ito and Kaneko@6# recently proposed this type of couple
chaotic oscillator model. The striking finding from the sim
lation of this model is that with an external input unit, such
network model self-organizes into the layered structures
this model, an external constant input was needed to
manually placed to trigger the formation of network stru
ture, and then this input unit becomes a ‘‘root’’ of the layer
network. It can be said that this external input induces so
impurity to the system. Due to this impurity, the interacti
between units must be more or less disturbed. We supp
that this disturbance is the essential factor of the formation
the network structure. If this speculation is true, another t
of disturbance may reproduce the similar type of sponta
ous network structure formation.

Here, we introduce delay to the connection change as
method to disturb the dynamics of the system. In biologi
information processing, delay is an important factor, and
effect of delay on dynamical systems is perceived as a so
of more complexity@7–10#. As mentioned later, our numer
cal solution indeed shows that delay contributes to the ph
of more complex dynamics. When the network structure
concerned, however, the delay induces a peculiar dynam
order.
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Ohira and Sato@11# have recently proposed a simp
model to induce a regular spiking pattern using delay. Th
are also studies that show delay could lead to the suppres
of complex dynamics@12,13#. Our paper here can be consid
ered as one such example exhibiting an effect of delay
ward order.

II. MODEL

We employ a globally coupled map~GCM! @2# with plas-
tic couplings as a model of spontaneous network struc
formation. Each unit in the system is the logistic map. T
outputxn at the time stepn is given as follows:

xn115kxn~12xn!.

k is the parameter representing the nonlinearity of the m
which can take the value between 0 and 4. With units of t
type, we consider the following network model:

xn11
i 5kyn

i ~12yn
i !,

yn
i 5~12c!xn

i 1c(
j 51

N

«n
i j xn

j .

Here,xn
i and yn

i are the output and the state variable of t
unit i, respectively, at the time stepn. N is the number of the
units, andc is the parameter that represents the strength
the influence of other units on the dynamics of uniti. The
variable«n

i j is the strength of the connection from unitj to
unit i.

Many types of dynamics for the connection strengths c
be considered. As seemingly the most simple one, we e
cially consider the dynamics described by

«n
i j 5

«̃n
i j

(
j 51

N

«̃n
i j

,

«̃n11
i j 5H @11cosp~xn2t

j 2xn
i !#«n

i j ~ for i 5” j !

0 ~ for i 5 j !.
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Parametert is the delay time. This dynamics represents
strengthening of connection between units whose state v
ables are of similar values. So this can be thought of a
possible extension of Hebb’s rule, which is widely used
neural network studies@14#. Though the ‘‘normalization’’
over all units is included only to avoid the divergence
state variables, it can be recognized as a simple repres
tion of the global competition among the coupling streng

In the simulations shown below, as an initial condition,
the coupling strengths« i j are set to be identical, and the sta
variablesx0

i are drawn from a random number between
and 1.

III. SIMULATION RESULTS

First, we present phase diagrams~see Fig. 1! plotted
against parametersk andc, for two different values oft.

In general, the phase diagram of GCM is parted into f
lowing four phases@2#: ~i! a coherent phase, where all uni
oscillate synchronously;~ii ! an ordered phase, where uni
split into a few clusters in which the units oscillate synch
nously;~iii ! a partially ordered phase, consisting of both sy
chronized clusters and desynchronized units; and~iv! a de-
synchronized phase, without synchronization between
two units.

Figure 1~a! is the case witht50, i.e., no delay is intro-
duced to the connection change. Being different from
conventional GCM, there is no partially ordered phase, si
the introduction of the connection change strongly stabili
clustering among units. Especially, there is a wide regime
ordered phase withN/2 clusters.

In each phase, the network structure is described as
low: In the coherent phase, all connections have almost
same strengths, namely, 1/(N21). The subtraction of one in
the denominator is due to the rule that the self-connectio
always zero. In the ordered phase, after the transient,
connections between units that belong to the same clu
remain and the connection between units of the differ
clusters converges to zero. The strength of the connectio
almost the same within a cluster, and its value is, noting
size of the cluster asNc , approximately 1/(Nc21). In the
desynchronized phase, the network structure is highly di
dered and temporal change is very violent. There seems t
no significant structure. To summarize, in the case witht
50, the network evolves to either a temporally fixed clust
ing structure or a violently altering random structure.

Figure 1~b! is when parametert is set to be one. This
introduction of delay to the connection change alters
phase diagram drastically. The ordered phase with more
two clusters is almost perfectly suppressed, and a part
ordered phase appears with wide ranges of parameter va
The effect of delay is to introduce a disturbance to the s
tem by connecting the past state to the present one, and
is strong enough to make almost all the clustering patte
with more than two clusters unstable, and turn an orde
phase with a relatively large number of clusters into the p
tially ordered phase. In the other three phases, namely,
herent, ordered, and desynchronized phase, the dynami
06620
e
ri-
a

f
ta-
.
l

-

-
-

y

e
e
s
f

e-
e

is
ly

ter
t
is
e

r-
be

-

e
an
lly
es.
-

his
s
d

r-
o-
of

state variables and connection strength seems not to be
ferent from the case without delay.

In the partially ordered phase, the movement of units
hibits chaotic itineracy, which is characterized by the d
namic change of the effective degrees of freedom@2#. In a
conventional GCM, this phase is observed for relatively n

FIG. 1. Phase diagrams against parametersk and c. Letters in
the figure represent; C: coherent phase, O: ordered phase, P
tially ordered phase, D: desynchronized phase. Numbers in the
dered phase of~a! are typical numbers of clusters in that regim
whenN, the whole number of units, is 10.~a! A case with variable
coupling strength and no delay.~b! A case with variable coupling
strength and delay time one.
5-2
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row ranges of parameter values. Here, by the introductio
delay, partially ordered phase appears in a much wider
gime in the parameter space. Hence, it can be said tha
delay produces a richer dynamical behavior.

Although the dynamics of units exhibit such a compl
movement, the situation is different as we turn our attent
to the dynamics of the connection strength in this regim
Snapshots of the strength of the connection matrices«n

i j at
different time steps are shown in Figs. 2 and 3. Here, we
parameter valuesk53.7, c50.25, andt51.

Figure 2~a! is a snapshot taken at the 1200th time st
One may easily see that the stronger connections are con
trated in a few columns. In this figure, the filled squares
the i th column represents the connection from thei th unit to
the other units, so Fig. 2~a! represents the situation that th
connections from a few units to almost all the other units
selectively strengthened. These few units emerged as ‘‘co
or ‘‘dominant’’ units of the structure of the network. In Fig
2~b!, one example of the graph representation of the netw
structure, drawn according to the method used in@6#, is
shown. The dominance of units 8 and 17 over the rest of
units may be seen.

FIG. 2. ~a! Snapshot of the connection matrix. The size of t
square plottedi -n ith row and j th column is proportional to the
value of« i j , and« i j 51 when the square size is equal to the g
size. This snapshot is taken from the time series shown in Fig.
the 1200th step.~b! One example of the graph representation of
network structure. Numbers written in circles represent unit ind
while lines between circles correspond to the connection betw
units. This graph is drawn according to the same connection ma
as shown in~a!, with unit 8 as a starting unit, while another choic
of a starting unit alters the graph structure. A detailed method
draw this graph is written in Ref.@2#.

FIG. 3. ~a! Snapshot of the connection matrix, taken from t
time series shown in Fig. 3 at the 20 000th step.~b! One example of
the graph representation of the network structure, drawn accor
to the same connection matrix as shown in~a!, with unit 11 as a
starting unit.
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After a sufficient length of time steps are elapsed, a c
nection matrix appears similar to the state shown in Fig. 3~a!.
In this figure, taken at the 20 000th time step, almost all
connection resides in only one column, reflecting an em
gence of a single dominant unit. One connection is cited
the other column because of the characteristics of our mo
that the self connection is meant to be 0. In Fig. 3~b!, the
graph representation of the network structure is shown ag
illustrating the prominent dominance of unit 11. In this stag
the concentration of the coupling strength to one column
relatively stable so that such a state may sustain for th
sands of time steps.

Considering the apparent tendency that the connec
strength would gather to a few columns, we calculated
summation of the connection strength over each column
each time step, i.e.,( i 51

N «n
i j , which represents, in a sens

the strength of the influence of the uniti on the other units.
We plotted the time series of this value averaged for ev
100 steps~Fig. 4 is the plot!. The frequent changes of th
dominant core unit in the earlier stage, and the stable las
of the dominance by a particular core unit for up to abo
20 000 steps in the later stage may be seen.

Now, let us consider the influence of the appearance
such a dominant unit on the dynamics of state variables.
described above, in the parameter regime we now cons
system exhibits the chaotic itineracy that accompanies
dynamic temporal change of the effective degrees of fr
dom. One method to evaluate the effective degrees of f
dom is to calculate the number of clusters with low reso
tion @2#. Figure 5 is the calculated number of clusters w
three different resolutions. Prominent decline of the effect
degrees of freedom is observed in two periods, namely, fr
the 5000th step to the 8000th step, and after the 18 00
step. Note that these periods corresponds to the appear
of the dominant unit, as is shown in Fig. 4.

The decline of the effective degrees of freedom impl
the coherent movement among units. To investigate whe
such coherent movement really happens, we computed
distribution ofxn

i around the mean value,( i 51
N xn

i /N, at each
step. The distribution is calculated for three different perio

at

,
en
ix

o

ng

FIG. 4. An example of the time series of( i 51
N «n

i j , whose values
are represented by vertical lines.
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say, 0th–5000th step, 5000th–10000th step, and 2000
25000th step. Note that the first period corresponds to
frequent change of the dominant unit, and the latter two
riods to the stable lasting of the dominance. The results
shown in Figs. 6~a!, 6~b!, and 6~c!, respectively. All of these
three figures show the peak at the center. However, the p
is much keener and the width of the distribution is thinner
the last two figures, which imply that the coherent activ
among units do emerge.

IV. SUMMARY AND DISCUSSION

We studied on GCM with variable coupling strength. T
rule of coupling change is one that may be regarded as
extension of Hebb’s rule, which is widely used in the neu
network studies. In this model, without delay, we observ
only clustering or random network, corresponding to t
clustering and chaotic dynamics of state variables, resp
tively. When we introduce delay in the coupling updati
rule, the system exhibits another type of dynamics, ca
chaotic itinerancy~CI!, which is associated with the tempor
change of the effective degree of freedom. Correspondin
this dynamics, a different type of organization of netwo
structure, i.e., network with radiative connection from on
one unit to almost all the other units in the system, emerg
Such network structure facilitates the coherent activ
among units, which is confirmed by the decline of the effe
tive degrees of freedom of the dynamics of state variab
and the distribution of values of state variables around
mean of them. The unit that sends connections to almos
the other units, called the dominant unit, is not fixed in tim
and changes unit to unit.

As is widely known, the introduction of delay to dynam
cal systems evokes more complex dynamics. Here in
system, delay may be regarded as playing the similar rol
trigger the emergence of CI. Without delay, the system
hibits either clustering or chaotic dynamics, since the H
bian type of coupling updating rule strongly stabilized t
clusters once they were formed, and the nonlinearity str
enough to destabilize the clustering pushes the system

FIG. 5. The effective degrees of freedom calculated with th
different resolutions, i.e., 0.0001, 0,001, and 0.01. This plot is
tained using the data of the same session as used in Fig. 3.
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FIG. 6. Distribution ofxn
i around the mean value.~a! Between

the 0th and 5000th steps.~b! Between the 5000th and 10 000t
steps.~c! Between the 20 000th and 25 000th steps.
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highly chaotic dynamics and there is no room for the form
tion of a stable and ordered network structure. By the int
duction of delay, the phase with the marginal characteris
between clustering and chaos, i.e., the partially orde
phase with CI, appears. In our simulation, only in this pha
network structure that has both order and flexibility at on
can emerge. We propose that chaotic itinerancy is an in
table feature for any dynamical system to form a structu
and flexible network.

In our paper, we use the delay as the method to introd
the instability to the dynamics and force the system to
hibit the chaotic itinerancy. Indeed, the specific value oft is
not essential for the formation of the above-mentioned n
work structure. Any value oft pushes the system to th
partially ordered phase with CI. If there is another way
introduce instability to the system, it will do, but the intro
duction of delay seems to be the most simple way, and c
sidering the natural system, delay exists ubiquitously, its
lization is a convenient way to evoke complexity.

Also, we note that there is a dynamical interplay betwe
the coherence of weight structure and the coherence of
tivities of units. As mentioned above, delay in the connect
change gives rise to the complex behavior in the dynamic
.
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state variables. This dynamics is characterized by the tem
ral change of the effective degrees of freedom. When
degree of freedom is low, units are somewhat cluster
while with the high degrees of freedom, values of state va
ables are spread. Now, let us suppose that the system
the relatively low degree of freedom suddenly gets the h
degrees of freedom. Since units are clustered in the past,
a few units have values near the previous ones, which me
that only a few units are near the previous position of alm
all of the units. This situation causes selective strengthen
of connections from such a few units to the other units. T
is the mechanism that the dominant unit appears. The
namic change of the effective degrees of freedom triggers
emergence of the dominant units. Once the dominance of
unit gets sufficiently large, this unit starts to attract more a
more units around it, since, in this state, almost all of t
units obey the quite similar rule, so the dynamics of eve
unit has to be similar to each other. This results in alm
complete dominance by the only one unit. However, t
dominant state cannot last long. In fact, our numerical sim
lation shows sudden substitution of a core unit. The study
the stability of dominant state is one of future works.
ev.
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